

4-6. Use what you know about the angles of a triangle to find the value of x and the angles in each triangle below.

a.

b.

c.

d.

- 4-7. Use the triangles at right to answer the following questions.
 - a. Are the triangles at right similar? How do you know? Show your reasoning in a flowchart.

- b. Examine your work from part (a). Are the triangles also congruent? Explain why or why not.
- 4-8. As Randi started to solve for x in the diagram at right, she wrote the equation $7^2 + x^2 = (x+1)^2$.

- a. Is Randi's equation valid? Explain your thinking.
- b. To solve her equation, first rewrite $(x+1)^2$ by multiplying (x+1)(x+1). You may want to review the Math Notes box for Lesson 2.2.2.
- c. Now solve your equation for x.
- d. What is the perimeter of Randi's triangle?
- 4-9. Assume that the shapes at right are similar. Find the values of x, y, and z.

4-10. Are the lines represented by the equations at right parallel? Support your **reasoning** with convincing evidence.

$$y = -\frac{3}{5}x +$$